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Abstract
An effective Hamiltonian containing Jahn–Teller (JT) first- and second-
order vibronic reduction factors (RFs) is a convenient way of modelling the
spectroscopic properties of solids and molecules in which vibronic interactions
are important. It can act as a bridge between experimental data and basic
theory. In particular, second-order RFs can give valuable information on
many of the fundamental properties of strongly coupled systems. As interest
in the icosahedral fullerene molecules and ions has grown over the last few
years, it has become necessary to be able to calculate values for second-order
RFs in icosahedral symmetry in terms of more fundamental vibronic coupling
parameters. Following on from earlier work on the icosahedral T⊗h JT system,
we present here results of such calculations of the second-order vibronic RFs
for the icosahedral G ⊗ g, G ⊗ h, H ⊗ g and H ⊗ h JT systems. These
systems are relevant for the ground and excited states of C60 anions and cations.
The calculations are based on the Franck–Condon approximation followed
by additional non-Condon corrections. Previous work has demonstrated that
such an approach can give values for the RFs close to those deduced from
experiments.
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1. Introduction

The electronic properties of individual fullerene ions are often much influenced by the
vibrations of the fullerene molecule, due to the Jahn–Teller (JT) coupling [1, 2] between the
electrons and the nuclear cage. This is particularly true when the electrons are in a degenerate
orbital state [3]. Icosahedral symmetry gives rise to orbital triplet (T1, T2), quadruplet (G) and
quintuplet (H ) states (in additional to singlet A states). This means that the ground and/or the
excited states of fullerene molecules and ions can be subject to various different JT effects.
There are many ways in which the JT coupling can influence the data obtained during an
experimental investigation and it is important to find out the nature of the physical principles
involved in these influences.

A very convenient description of the properties of the various JT systems can be obtained
using an effective Hamiltonian which provides a bridge between theory and the experimental
data. In particular, it is used to describe the effects of electronic perturbations through the
introduction of so-called vibronic reduction factors (RFs) [4]. RFs are convenient parameters
as they involve directly both the frequencies of the vibrations and the strength of the JT coupling.
Their measurement by experiment and their theoretical evaluation based on a suitable model
can then be compared. The most simple are the first-order RFs (foRFs) derived from first-order
perturbation theory, as they are relatively easy to calculate and can be measured directly from
an analysis of experimental data.

Many JT systems contain minima (or wells) in the ground adiabatic potential energy
surface (APES). foRFs can then quench the effect of many perturbations drastically. This is
because the overlap integral between vibrational states localized in individual potential wells
located in the APES may be very small. Typically, foRFs decrease exponentially from unity
to zero as the vibronic coupling strength increases. For example, this quenching drastically
reduces the effects of spin–orbit coupling in many cubic systems. In contrast, however, second-
order RFs (soRFs) do not generally involve this overlap integral and they consequently remain
important at strong coupling strengths. They can therefore dominate the effects of the foRFs, as
is true in the case of spin–orbit coupling. Another property of soRFs is that they can introduce
additional terms into the effective Hamiltonian. The major problem is that soRFs are generally
difficult to calculate with high accuracy, except in the limit of infinitely strong coupling when
the Franck–Condon (FC) approximation [5] is valid. However, in order to overcome many
of these difficulties, a new procedure has been devised involving non-Condon corrections to
the standard FC method [6]. This extends the range of applicability of the results to much
lower coupling strengths. The validity of the theory has been successfully tested against the
well known case of the cubic T ⊗ t2 JT system. It was then used to calculate the soRFs in the
icosahedral T ⊗ h JT system, which is relevant to the ground state of the C−

60 anion.
The overall aim of the work described here is to provide a comprehensive and systematic

account of the basic theory of soRFs which arise in the remaining icosahedral systems, which
will be applicable to higher charge states Cn−

60 of fullerene anions. We will give the most
important results obtained for the G ⊗ g, G ⊗ h, H ⊗ g and H ⊗ h JT systems. Although
not explicitly given, this provides information also on the combined JT systems G ⊗ (g ⊕ h)
and H ⊗ (g ⊕ h). Section 2 summarizes the underlying principles involved in using the FC
and non-Condon corrections to calculate the soRFs. Formulae defining the soRFs are also
given and explained in physical terms. Sections 3 and 4 summarize the basic formulae and
definitions of the RFs including the non-Condon corrections. Sections 5 and 6 give a selection
of results of calculations of the soRFs for the G and H orbital states respectively. Finally, the
results and their relevance in the modelling processes are discussed in section 7 together with
concluding remarks.
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2. The physical principles of the Franck–Condon approximation and the non-Condon
correction

The general vibronic Hamiltonian for a JT system consisting of an electronic orbital state of
symmetry � interacting with its immediate surroundings is

H = 1

2

∑

�γ

(
P2
�γ

µ
+ µω2

�Q2
�γ

)
C0� + V�

∑

γ

Q�γC�γ (1)

where the Q�γ are collective vibrational coordinates of the surroundings, P�γ are the
corresponding conjugate momenta and V� and ω are the coupling constant and oscillator
frequency respectively for the mode �γ . C�γ are the appropriate Clebsch–Gordan (CG)
operators (see [7], for example) transforming like the component γ of the irreducible
representation � such that

C�γ =
∑

σi ,σ j

|�σi 〉〈�σ j |〈�γ�σi |�σ j 〉 (2)

whereσi and σ j are components of�. The C�γ can be expressed in terms of the CG coefficients
〈�γ�σi |�σ j 〉 given in [7]. Also C0� is the identity matrix of dimension �. γ = θ, ε, 4, 5, 6
for coupling to the five components of the vibrational h-modes (� = h) and γ = a, x, y, z for
coupling to the four components of the g-modes (� = g).

On neglecting the kinetic energy terms in equation (1), the remaining terms in the
Hamiltonian generate sets of adiabatic potential energy surfaces (APESs). These will be
labelled I , where I = 0 corresponds to the lowest sheet. The states associated with sheet
I with n phonon excitations are written as |I, n〉. In the FC approximation, the virtual
transitions between the ground and excited states of the vibronic Hamiltonian, which appear
in the formulae for second-order perturbation calculations, take place so rapidly that the nuclei
do not move during the transition [8]. This assumption is valid if the energy gaps in the
nuclear system are much larger than those present within the electronic system. This applies
therefore to the systems involving strong vibronic coupling that are of interest here. The Born–
Oppenheimer approximation can be then used with the factored adiabatic wavefunctions to
calculate the soRFs as described in [5] for the icosahedral T ⊗ h JT system.

The non-Condon perturbative correction arises because the nuclei will actually move
during a transition as the coupling is not infinitely strong. Coulomb attractions between the
electrons and the nuclear frame will couple the two together and limit the ability of the electronic
cloud to distort under perturbations. However, by allowing the nuclei to move, the polarizability
of the molecular system through the electron cloud when an external perturbation is present is
enhanced. This results in a considerable modification to the standard Franck–Condon diagram
as transitions between the adiabatic sheets are no longer simply vertical. Transitions to and
from excited vibrational levels whose energies are nh̄ω� (with n = 1, 2, . . .) above and below
the energy of the vertical transition also take place.

3. Basic formulae and definitions of vibronic reduction factors

Electronic perturbations generate first- and second-order Hamiltonians describing the coupling
within the orbital state of symmetry �, as discussed in detail in [6] and [9], for example. The
definition of the soRFs K (2)

M (�l ⊗ �m) involving two perturbations, H(1)(�l) of symmetry
�l and H(1)(�m) of symmetry �m , can be found in the general theory summarized in [10].
Their evaluation within the FC approximation for the icosahedral T1 ⊗ h JT system has been
described in detail in [5] and is summarized below.
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Second-order perturbation theory generates a second-order Hamiltonian

H(2)(�l ⊗ �m) = H(1)(�l)G(�)H(1)(�m) (3)

where G(�) is the Green operator defined by

G(�) =
∑

I,n

|I, n〉〈I, n|
�E (I,n)

(4)

where �E (I,n) is the energy of the excited state |I, n〉 measured relative to the ground APES
(I = 0). The sum excludes the ground state I = n = 0.

In many systems of interest, including those to be considered here, the ground APES
contains minima (or wells). To allow the system to tunnel between the wells, symmetry-
adapted vibronic states can be constructed from appropriate linear combinations of the vibronic
(electronic and vibrational) states in the wells. States transforming as the σi th component of
overall symmetry � can be derived using projection operator techniques, for example. The
resultant ground states will be written as |0�σi 〉, where the ‘0’ indicates that the oscillators
in the wells are in their ground states. Following the notation developed in [10], we will
write the vibronic ground states in a well p as |ψ ′

p; 0〉, where the ‘0’ again indicates that the
localized oscillators in the wells are in their ground states. ψ ′

p represents the vibronic state
in a well expressed in a global reference frame common to all wells. The result is that the
symmetry-adapted ground states can be written in the form

|0�σi 〉 =
∑

p

α
p
k |ψ ′

p; 0〉 (5)

where the α p
k are appropriate coefficients for well ‘p’.

The soRF K (2)
M (�l ⊗ �m) can then be derived from the relation

K (2)
M (�l ⊗ �m) = 〈0�σi |L(2)Mµ(�l ⊗ �m)|0�σ j 〉

(�σi |L(2)Mµ(�l ⊗ �m)|�σ j )
(6)

with

L(2)Mµ(�l ⊗ �m) =
∑

γ1,γm

C�lγl G(�)C�mγm 〈�lγl�mγm |Mµ〉 (7)

and

L(2)Mµ(�l ⊗ �m) =
∑

γl ,γm

C�lγl C�mγm 〈�lγl�mγm |Mµ〉 (8)

where the label M ∈ �l ⊗ �m gives the overall symmetry under consideration. The states
|�σi ), etc are combinations of pure electronic states (rather than the vibronic states involved
in |0�σi 〉).

As the FC approximation applies to the infinite coupling limit, we here replace the vibronic
well state |ψ ′

p; 0〉 in equation (5) by a product of electronic and nuclear wavefunctions with
the latter function centred at the bottoms of the wells. The basic ideas can be best understood
in terms of WKB wavefunctions. Detailed calculations given in [5] show that this leads to the
so-called FC Green operator G(p)

FC for well p in which each well is considered separately. The
effective virtual transitions are vertical in an FC diagram. They originate from the vibrational
ground state in one of the wells on the lowest APES and finish at the turning point of the
excited vibrational state of energy nh̄ω associated with another well in an upper sheet lying
exactly above the bottom of the minimum on the lowest sheet. The expression for the soRF in
the FC limit then becomes

K (2)FC
M (�l ⊗ �m) =

∑

p,q

α
p
k 〈ψ ′p|L(2)p

Mµ (�l ⊗ �m)|ψ ′q〉αq
l

(�σi |L(2)Mµ(�l ⊗ �m)|�σ j )
(9)
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whereL(2)p
Mµ (�l ⊗�m) is equivalent toL(2)Mµ(�l ⊗�m) in equation (7) but with the Green operator

replaced by G(p)
FC . In this approximation, the energy difference�E (I,p) in equation (4) can be

replaced by the vertical energy gap �E (I )
vert separating the sheets at coordinate Q = Q0p

corresponding to the bottom of well p (which is independent of the label p). Thus the
FC approximation is an accurate analytical technique in the strong coupling regime. As
emphasized in [5] and [11] for the octahedral T ⊗ t2 and icosahedral T ⊗ h JT systems
respectively, the underlying physics of soRFs is clearly exposed by the FC analysis.

4. Corrections from the non-Condon terms

As discussed in [6], the effect of the non-Condon (NC) terms is to give a correction |�ψ1p〉
to the ground state in well p which is proportional to the well displacement coordinate
qp = Q j − Q0p. (This correction arises from the term U1 in the corrected potential energy
given in equation (13) of [6].) Then the coordinate Q j replaces Q�γ in equation (1). The NC
perturbation also gives similar corrections to the excited well states, which also involve qp.
An additional complication is that it can cause two excited well states to be admixed but we
simplify the problem in the analysis here by excluding such mixing of the excited well states.

As the orbital operators do not satisfy the closure relation after the introduction of the
non-Condon corrections, the well Green operator G(p)

FC must be replaced by a form derived
from standard second-order perturbation theory in which the states and energy denominator
include the non-Condon element. The general expression for the soRFs corrected to include
NC contributions thus becomes

K (2)FC
M,corr(�l ⊗ �m) =

∑

p,q

αk
p
〈ψ ′p

c |L(2)p
Mµ,corr(�l ⊗ �m)|ψ ′q

c 〉
(�σi |L(2)Mµ(�l ⊗ �m)|�σ j )

αl
q (10)

in which L(2)p
Mµ,corr(�l ⊗ �m) is now calculated using the corrected Green operator and where

|ψ ′p
c 〉 is the corrected new ground state in well p. In this final result, we have terms which

are independent of qp (which represent the standard FC results) together with the non-Condon
correction containing terms which are of order q2

p. Higher-order terms of order q4
p and q2

pq2
p′

can normally be neglected.
As noted earlier, �E I

vert is proportional to the relevant JT energy EJT. This in turn is
proportional to the inverse square of the appropriate linear JT coupling constant Vj . Thus the
non-Condon correction to the standard FC values is of the order of the inverse square of JT
energy (i.e. of the order of V −4

j ). We also note that, even though all wells are equivalent to
each other, we have nevertheless retained the labels of the individual wells in equation (10) for
reasons of clarity in the following calculations.

We will now determine explicit expressions for soRFs in various icosahedral systems. For
simplicity, we will restrict our calculations to cases where both perturbations have the same
symmetry, namely �l = �m (=�).

5. Calculations for icosahedral orbital G-state systems

The work of Ceulemans and Fowler [12] provides the general theoretical background for the
study of the G ⊗ (g ⊕ h) JT system in icosahedral symmetry. This follows earlier work by
Khlopin et al [13], Pooler [14] and by Cullerne and O’Brien [15] as reviewed in the book
by Chancey and O’Brien [3]. Analytical expressions for the vibronic states and the energy
spectrum were given explicitly in our earlier papers [16, 17]. In [16], the first calculations of
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Table 1. The calculated values of the FC and NC contributions to the soRFs K (2)
M (�⊗ �) for the

G ⊗ g JT system in terms of the parameters M and �. (X = 1/EGg
JT and Y = h̄ωg/(E

Gg
JT )

2.)

M � Franck–Condon Non-Condon

A T1 − 3
8 X − 3

128 Y

A G − 3
32 X − 9

256 Y

G G + 9
256 X − 45

2048 Y

A H − 3
8 X 0

G H − 9
32 X + 9

512 Y

foRFs and soRFs for this system were also given. Here we give the results of the more accurate
calculations of the soRFs including the NC contributions.

Here we are studying an orbital G state, so the general vibronic Hamiltonian in equation (1)
can be written explicitly in terms of 4 × 4 matrices as given, for example, in [16]. However, it
is desirable to enhance the notation to give explicitly the particular JT systems involved. Thus
the linear coupling constants Vg and Vh are rewritten as VGg and VGh respectively to denote
that they refer specifically to the G ⊗ g and G ⊗ h JT systems respectively. The JT energies
are similarly written as EGg

JT and EGh
JT respectively, while the oscillator frequencies are ωg and

ωh respectively.
In the G ⊗ g subsystem, there are minima having tetrahedral (Th) symmetry and energy

EGg
JT = − 3

4 k2
Ggh̄ωg (11)

where kGg = −VGg/(2µh̄ω3
g)

1/2 is a dimensionless coupling constant. In the G⊗h subsystem,
the minima have trigonal (D3d) symmetry and are of energy

EGh
JT = − 3

5 k2
Ghh̄ωh (12)

where kGh = −VGh/(2µh̄ω3
h)

1/2. (Note that the above expressions for the JT energies correct
those given in [16].) In mixed systems involving coupling to both modes simultaneously, the
minima arise from the most strongly coupled mode. For certain specific values of coupling
in which neither mode is dominant, the JT distortion space can consist of an equipotential
minimal energy trough [12, 16], but we will not consider this special case in this paper.

In the G ⊗ g JT subsystem, the symmetry-adapted vibronic states formed from the ground
states in the five Th wells consist of four degenerate ground states of G symmetry and one
excited state of A symmetry, as given in [16]. Within the tetrahedral wells, the electronic G
quadruplet splits into a lower A singlet separated from the upper T triplet by an energy of
EGg

JT [12]. The results of the calculation of the soRFs as a function of the vibronic coupling
coefficient kGg for this JT system are given in table 1. For clarity, the FC and NC components
are listed separately. Also given in this table are the allowed overall symmetries labelled by
M . Some of the results are shown graphically as a function of kGg in figure 1. However, an
additional complication arises here which will be a recurring theme throughout these types of
calculation. This is that the soRF K (2)

Ga(H ⊗ H ) has an additional label ‘a’ associated with
the symmetry label M . This arises because the inner product of H ⊗ H contains two H
representations. We use ‘a’ when the required component is obtained from the first column
in the table of CG coefficients given in [7]. (Subsequently, the label ‘b’ will be used for
components derived from the second column of the same table.)

In the case of the G ⊗ h JT subsystem, the symmetry-adapted states constructed from the
ground states in the ten D3d wells have symmetries G, H and A [16]. Within these wells, the
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Figure 1. A plot of the calculated values of the combined FC and NC components of the soRFs
K (2)

M (� ⊗ �) as a function of the vibronic coupling coefficient kGg in units h̄ωg for the G ⊗ g JT
system for different values of M and �.

Table 2. The calculated values of the FC and NC contributions to the soRFs K 2
M (� ⊗ �) as a

function of the vibronic coupling constant kGh for the G ⊗ h JT system as a function of M and �
where Z = 1/EGh

JT and W = h̄ωh/(EGh
JT )

2.

M � Franck–Condon Non-Condon

A T1 − 33
80 Z − 27

320 W

A G − 59
160 Z − 33

800 W

G G − 17
1920 Z − 1

640 W

H G − 113
480 Z + 43

800 W

A H − 1
5 Z − 273

4000 W

G H + 7
120 Z − 713

32 000 W

H H − 1
24 Z − 199

6400 W

electronic G electronic state splits into an E doublet and two singlet states A1 and A2. Relative
to the A1 ground state, the excited A2 state has an energy 2

3 h̄ωhk2
h and the two E states have

energies 1
2 h̄ωhk2

h . The corresponding soRFs are given in table 2 using the same format as in
table 1. Some of the results are given in figure 2.

Generally, the FC contribution to the soRFs appearing in table 1 are relatively simple
fractions, which do not always have the same sign. The NC contributions are more complicated
due to the nature of the summations involved in their evaluations. They also do not always have
the same signs, either as each other or as the corresponding FC contributions. The non-Condon
corrections given in table 2 are also more complicated than those given in table 1 because the
excited states appearing in the summations are not degenerate in this case. Clearly, all soRFs
are dominated by the FC contributions which are independent of the dimensionless coupling
constants. This is why the curves in the figures tend to constants in strong coupling. However,
the NC contributions provide deviations from the constant values; it is these deviations that
are important in this work.
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Figure 2. A plot of the calculated values of the combined FC and NC components of the soRFs
K (2)

M (� ⊗ �) as a function of the vibronic coupling coefficient kGh in units of h̄ωh for the G ⊗ h
JT system for different values of M and �.

6. Calculations for icosahedral H-state orbital systems

The properties of the H ⊗ (h ⊕ g) JT system are of much interest theoretically. The JT
instabilities present were extensively studied by Ceulemans and Fowler [18]. The current
authors [19] followed up their earlier modelling work [20, 21] and that of Manini and co-
workers [22] by studying the motion of the system along possible tunnelling paths between
different pairs of wells in the APES. Here, we are interested in calculating the soRFs for the
icosahedral H ⊗ (g ⊕ h) JT system and the corresponding JT subsystems.

For this system, the general vibronic Hamiltonian can be rewritten in terms of three 5 × 5
matrices as given in [23], for example, but again with an enhancement in the notation to give
explicitly the particular JT systems involved. Thus the linear coupling constants Vg, Vh1 and
Vh2 are rewritten as VHg, VH a and VH b respectively. Similarly, the JT energies and oscillator
frequencies are similarly updated such that, for the H ⊗ g subsystem,

E Hg
JT = − 5

36 k2
Hgh̄ωg, (13)

for the H ⊗ H ha subsystem we have

E H ha
JT = − 2

15 k2
H ha

h̄ωha (14)

and similarly for the H ⊗ H hb subsystem we have

E H hb
JT = − 2

5 k2
H hb

h̄ωhb . (15)

In the above equations, kHg, kH ha and kH hb are the relevant dimensionless coupling constants.
Moate et al [21] gives the positions of both the trigonal D3d and pentagonal D5d wells.
The vibronic states associated with each type of minimum are given in [20]. Thus, from
the pentagonal D5d minima, symmetry-adapted vibronic states of H and A symmetries are
formed. Within the wells, the electronic H quintuplet in Ih symmetry splits into A1 ⊕ E1 ⊕ E2

representations of D5d. The A1 state is clearly the ground state. From an analysis of the
vibronic Hamiltonian, the energies of the excited E1 and E2 states are found to be almost the
same. For our present purposes, we assume that, in keeping with other approximations, they
are indeed degenerate each with relative energies equal to 2k2

H hb
/(5h̄ωhb ).
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Figure 3. A plot of the calculated values of the combined FC and NC components of the soRFs
K (2)

M (� ⊗ �) as a function of the vibronic coupling coefficient kHg in units h̄ωg for the H ⊗ g JT
system for different values of M and �.

From the trigonal D3d wells, symmetry-adapted vibronic states of H and G and A
symmetries are generated. Within these wells, the electronic H quintuplet splits into a
ground state of A1 symmetry and doublet excited states of E1 and E2 symmetries. For the
H ⊗ g JT subsystem, the relative energies of the E1 and E2 doublets are 5k2

Hg/(36h̄ωg) and
5k2

Hg/(12h̄ωg) respectively. Similarly for the H ⊗ ha JT subsystem, the relative energies of
the E1 and E2 doublets are 2k2

H ha
/(15h̄ωha ) and 14k2

H ha
/(45h̄ωha ) respectively.

The results of calculations for second-order RFs for the H orbital systems are tabulated
in table 3 (for the H ⊗ g JT subsystem), in table 4 (for the for the H ⊗ ha JT subsystem)
and in table 5 (for the H ⊗ hb JT subsystem). Some of the results are plotted in figures 3–5
respectively.

7. Discussion and conclusions

Vibronic reduction factors have been one of the most important products of JT work for
almost 50 years. Much of the early work involved both theoretical and experimental studies of
transition metal ion impurities, first in insulating crystals and subsequently in semiconducting
crystals. These systems usually have cubic symmetry and a considerable volume of literature
exists which analyses the properties of orbital doublets and triplets. There are now many
examples known in which there is excellent agreement between theory and experiment,
particularly for T ⊗ t2, E ⊗ e and T ⊗ (e ⊕ t2) JT systems [1, 2].

Some of the earliest calculations of vibronic RFs in cubic systems were undertaken by
Ham [4, 25]. Comprehensive results (for cubic systems) were obtained, as discussed in [26] for
example. With C60 ions in mind, the basic reasons for the present calculations are to assemble
in one place the underlying theory for the very large number of vibronic RFs which can arise in
icosahedral systems. In this way, it is hoped that a better and more complete understanding of
experimental data on relevant icosahedral fullerene systems will be forthcoming. For example,
such calculations may be useful in an analysis of the near-infrared absorption spectra obtained
very recently from isolated C−

60 ions in a storage ring [27].
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Figure 4. A plot of the calculated values of the combined FC and NC components of the soRFs
K (2)

M (� ⊗ �) as a function of the vibronic coupling coefficient kHha in units h̄ωha for the H ⊗ ha

JT system for different values of M and �.

Table 3. The calculated values of the FC and NC contributions to the soRFs K 2
M (� ⊗ �) as a

function of the vibronic coupling coefficient kHg for the H ⊗ g JT system as a function of M and

�, where S = 1/E Hg
JT and T = h̄ωg/(E

Hg
JT )

2.

M � Franck–Condon Non-Condon

A T1 − 4
5 S − 3

10 T

H T1 − 16
45 S − 2

75 T

A Ga − 1
3 S − 29

120 T

G Ga − 4
9 S + 77

180 T

G Ga + 4
45 S − 79

450 T

A Gb − 9
5 S − 603

1600 T

G Gb − 4
5 S − 7

400 T

H Gb − 4
5 S + 29

400 T

A Ha − 14
15 S − 59

300 T

Ga Ha − 74
315 S + 4

1575 T

Ha Ha + 32
9 S + 22

225 T

A Hb − 6
5 S 0

Ga Hb − 6
5 S 0

Ha Hb 0 + 6
25 T

It appears that the literature contains very few references to RFs in icosahedral systems
with which the results reported here can be compared, and none of these include reference
to experimental data. However, our Nottingham Group and their collaborators have used a
shift transformation (ST) method to deduce values for the first- and second-order RFs in the
T ⊗ h [10], in the H ⊗ (g ⊕ h) [19] and in the G ⊗ (g ⊕ h) [16] icosahedral JT systems. In
principle, it should be possible to compare results from the ST approach with results obtained
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Figure 5. A plot of the calculated values of the combined FC and NC components of the soRFs
K (2)

M (� ⊗ �) as a function of the vibronic coupling coefficient kHhb in units h̄ωhb for the H ⊗ hb

JT system for different values of M and �.

Table 4. The calculated values of the FC and NC contributions to the soRFs K 2
M (� ⊗ �) as a

function of the vibronic coupling coefficient kHha for the H ⊗ ha JT system as a function of M

and �, where L = 1/E Hha
JT and N = h̄ωha/(E

Hha
JT )2.

M � Franck–Condon Non-Condon

A T1 − 38
35 L − 4911

17 150 N

H T1 − 152
315 L − 32

3675 N

A Ga − 2
3 L − 2831

10 290 N

G Ga − 8
9 L + 4598

15 435 N

H Ga + 8
45 L − 92

441 N

A Gb − 18
35 L − 4581

17 150 N

G Gb − 8
35 L + 122

8575 N

H Gb − 8
35 L + 212

8575 N

A Ha − 34
105 L − 13 561

51 450 N

Ga Ha − 64
2205 L − 27 788

540 225 N

Ha Ha + 296
315 L − 1304

1575 N

A Hb − 6
7 L − 1263

17 150 N

Ga Hb 0 − 636
8575 N

Ha Hb − 24
35 L + 1128

8575 N

in the present study involving the non-Condon modification of FC calculations. A comparison
between the two approaches has already been made for the T ⊗ h JT system which has a
direct relevance to the ground state of the C−

60 molecular anion [6]. Nevertheless, it is difficult
to compare directly the new sets of results obtained here with our previous results as the FC
approximation is based on an infinite strength coupling model. It is only the new non-Condon
contributions which contribute as the coupling strength becomes finite. In general, it was
found that the calculated values of the soRFs for the T ⊗ h systems were smaller in the NC
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Table 5. The calculated values of the FC and NC contributions to the soRFs K 2
M (� ⊗ �) as a

function of the vibronic coupling coefficient kHhb for the H ⊗ hb JT system as a function of M

and �, where U = 1/E Hhb
JT and V = h̄ωhb/(E

Hhb
JT )2.

M � Franck–Condon Non-Condon

A T1 − 2
5 U − 1

50 V

H T1 − 4
5 U − 8

25 V

A Ga − 2
5 U − 1

250 V

A Gb − 2
5 U − 1

250 V

A Ha − 2
5 U − 1

250 V

Hb Ha − 8
25 U + 8

625 V

A Hb − 2
25 U − 41

1250 V

Hb Hb + 8
375 U − 56

3125 V

approach than in the ST model for the larger coupling strengths. However, in the modelling
of real systems, it was suggested that the NC approach was preferable as it produced more
realistic values.

We now comment, first, on the results obtained for the systems involving the G orbital. A
quantitative comparison of the soRFs calculated by the two basic methods is even more difficult
to make due to the increased complexities in the mathematics involved in the NC calculations.
In the G ⊗g JT system, the largest (negative) soRFs for kGg > 1 shown in figure 7 of [16] were
labelled e and f ; they correspond to the soRFs K (2)

Ga(H ⊗ H ) and K (2)
A (T1 ⊗ T1) respectively.

Our NC results agree with this statement. Similarly, the soRF having the smallest magnitude,
labelled b in figure 7 of [16], corresponds to the soRF K (2)

G (T1 ⊗ T1). This is in line with our
new calculations shown in figure 1. In the G ⊗ h JT system, the soRF K (2)

A (T1 ⊗ T1) appears
to have the largest magnitude for kGh > 1 in both the ST method (figure 8 in [16]) and NC
results given here (figure 2).

We now comment, secondly, on a few results involving the more complicated H orbital.
We thus consider the H ⊗ hb JT system for which the ST calculations are reported in figure 4
of [19] and the NC results here in figure 5. The soRF with the largest magnitude is K (2)

A (T1 ⊗ T1)

in both approaches. Similarly the soRF K (2)
A (Ha ⊗ Ha) is equally large in both approaches.

The overall aim of this and our earlier including work [6] was to give a comprehensive
account of the basic theory of soRFs in icosahedral JT systems and thus provide a framework to
enable the modelling of real systems to be undertaken. As pointed out earlier, the development
of the JT theory for magnetic ion impurities in semiconducting and insulating host crystals
provided a most significant step in our understanding of these systems. In turn, this provided
much of the basis for the manufacture of device material as well as the contributions to basic
science. However, we note that many years passed before JT models in cubic systems could be
used to improve our understanding of these systems. We hope that the calculations described
here will generate similar benefits in our understanding of the more complex icosahedral
systems such as anions and cations of the C60 molecule. In particular, the need for experimental
data is paramount in this quest.
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